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Abstract. A new method for the self-consistent treatment of Madelung potentials within the 
usual Hartree-Fock-Roothaan scheme forperiodicsystemsispresented. The new approach 
is based on Mulliken's population analysis and Ewald's rapid-convergence technique for the 
evaluation of lattice sums. The method is applied to two- and three-dimensional crystals 
of intermediate ionicity. We find that, while energy-related quantities are less affected, 
wavefunction-related observables depend strongly on the proper consideration of Madelung 
effects. Depending on the respective system, the Madelung potentials act to enhance or 
lower ionicity. The higher the crystal dimensionality, the more important are the Madelung 
corrections 

1. Introduction 

The extent of ionicity in a given crystal may extensively fix its physical properties. So 
from the classical theories of Born and Land6 [l] and Madelung [2] we know that the 
lattice energy of ionic solids can be well reproduced by considering a repulsive and an 
attractive term, the latter being solely determined by the Coulomb interaction between 
ions. Secondly, it has been emphasized that lattice dynamics is strongly governed by 
electrostatic interatomic potentials [3]. To give a third example let us point to surface 
chemistry: the catalytic activity of several metal oxides depends to a large extent on the 
surface Madelung potential [4]. 

Not only the interaction between particles with large net charges, but also more 
general long-range Coulomb forces that are present even in solids consisting of mod- 
erately charged subunits, may cause a surprise. Br6das [5] has shown for polyethylene 
that, if long-range contributions are properly handled, the zig-zag conformation in 
agreement with chemical intuition is more stable than a gauche form. Ignoring these 
contributions led to the opposite conclusion. 

From a theoretical point of view the question arises, how to treat classical Madelung 
sums and (more general) long-range forces. The problem we face with lattice sums is 
their poor convergence, especially if two- (2D) and three-dimensional (3D) species 
containing highly charged ions are under consideration. Two classical, rapidly con- 
verging methods for the evaluation of Madelung sums have been proposed by Ewald [6] 
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and Evjen [7], respectively. In the latter method, lattice sums are analysed by grouping 
contributions into shells of vanishing net charge, while in the former case the original 
Madelung series is replaced by two quickly converging sums (see below). Improved 
versions of both techniques have been developed [ S ,  91. 

Later, for instance. Metzger [lo] used Ewald‘s method within a semiclassical frame- 
work to compute the total energies of several ionic crystals containiigorganic molecules. 
In these studies the charges of the constituents had to be presumed, i.e. different point- 
charge arrays had to be compared. Pisani el a1 [Ill,  to obtain improved total energies 
for ionic systems, corrected their usual quantum-chemical ab initio calculations for the 
long-range Coulomb part, again applying Ewald-type summations. They took the net 
charges necessary for evaluating corrected total energies from a preceding ab initio 
treatment, but Madelung potentials did not enter into the Fock matrix (see below). 

Some kind of self-consistency in semiempirical schemes, for example, was introduced 
by Wangetal[12] to describe properly ionicmoleculesandsolidson the extended Huckel 
level [I31 (‘iterative extended Huckel theory’). This was managed by adjusting the 
empirical parameters iteratively to the respective atomic orbital occupations. There are 
also several quasi-self-consistent and self-consistent schemes for incorporating ionic 
effects in local-exchange density-functional-tpe computations [14,15]. In the field of 
ab initio Hartrce-Fock, linear combination of atomic orbitals, crystal orbital (HFLCAO 
CO) investigations of solids [16,17], the work of the Namur polymer group has to be 
emphasized. To treat long-range electrostatic interactions in a self-consistent manner, 
two main approaches were developed, namely (i) a combination of tho multipole expan- 
sion technique with the Riemann zeta function [18, 191 and (ii) the Fourier [20-221 
and Laplace transform [U] methods. These different techniques were applied to one- 
dimensional solids (polymers). 

In this work we present a new andcomputationally simplescheme to treat Madelung 
effects self-consistently in the framework of the usual HF LCAO CO technique. The 
ingredients for our method are Ewald‘s lattice summation and Mulliken’s population 
analysis [24]. 

The paper is organized as follows. In section 2 the theoretical background is devel- 
oped. Subsections review the usual HF LCAO CO method. describe the computation of 
Madelung site potentials via Ewald sums and show how Madelung matrix elements are 
evaluated. Section 3 gives some details concerning the computational realization. In 
section 4, investigations on hexagonal ?D and cubic 3D boron nitride as well as on layers 
of carbon monoxide molecules are presented. Afinal section, 5, gives several conclusions 
and points to some potential extensions of the method. In an appendix the approxi- 
mations concerning the Madelung matrix elements are justified both numerically and 
analytically. 

2. Method 

2.1. Long-range problems in HFLCAO CO schemes 

Though the standard HFLCAOCO method, which we use as a starting point for the self- 
consistent inclusion of Madelung potentials, is well described elsewhere [16,17], for 
future reference the basic equations are reviewed. 
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Applying the method, the pseudo-eigenvalue problem 

F(k)C”(k) = &, (~ )S(k )cn(k )  (1) 
has to be solved for different k-vectors belonging to the first Brillouin zone (BZ) and for 
different CO indexed by n. In (l), E&) gives the dispersion of the nth band, while c,(k) 
contains the coefficients for the LCAO expansion of the nth CO as a function of quasi- 
momentum k .  Moreover F ( k )  and S ( k )  are Fock and overlap matrices in reciprocal 
space, respectively, their elements being related to configuration-space quantities by 

N 

~ , , ( k )  = 2 exp(ik-Ri)f$ ( 2 4  
j = O  

N 

~ , , ( k )  = E exp(ik.Rj)SzU. (26) 

(Here Greek lettersrepresent atomicorbital (AO) indices, and arabicletterscell indices.) 
In principle, for an infinite crystal the sum over lattice vectorsR, tends to infinity. The 
Fock matrix elements in direct space 

j = O  

(3) Oj - T Q  + p i  + pi + XOi f , ”  - p” p” p” P“ 

contain kinetic (T$), nuclear attraction (Zf”),  electron-electron repulsion (C$) and 
exchange (X?”) terms, the Coulomb interaction terms and Cejv being given by 

Here, ,!& is the AO (Y in cell a characterized by the lattice vector R,; ZE is the nuclear 
charge of atom B ( K E  atoms per cell); and F‘!? represents an element of the density 
matrix, calculated from LCAO coefficients by integration over the occupied part of the 
first BZ. Again, as in the case of equations (2), the summation over lattice indices h and 
I in (4)  has to be performed to infinity. In practice only lattice vectors up to R ,  are 
considered, which we call the ‘Madelung radius’. 

As shown elsewhere [25], the Fourier expansion (equations (2)) converges very 
rapidly for overlap, kinetic and exchange terms. However, the electrostatic summations 
(4a) and (4b) individually diverge. Combining both leads to a conditionally convergent 
series, but convergence is very slow owing to the delicate balance between negative 
(nuclear attraction) and positive (electron-electron) contributions. The situation even 
deteriorates for (i) ionic or partially ionic solids with large effective atom charges 
and (U) systems of dimensionality higher than 1 [26). In these cases, owing to the 
computational effort in treating many-neighbours interactions, only simple systems can 
properly be handled on the ab initio level. 

2.2. Madelung site potentials 

The above-mentioned lattice summations of electrostatic interactions in quantum chem- 
istry perfectly match the classical Madelung problem. We shall adopt Ewald’s rapid- 
convergence technique to correct the Coulomb integrals of equations (4a) and (46) for 
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their long-range part, i.e. we shall perform, as usual, the lattice sums explicitly only up 
to a (not too large) number M, and then add 'external' Madelung matrix elements. 

If Ks again is the number of atoms per unit cell and each atom B is carrying an 
effective charge QE, then 

is the total Madelung potential at site RA (MAE is a short-hand notation for the lattice 
sum 'pair potential factors'). Since the short-range electrostatic contributionsare already 
included in the standard HF treatment (summation up to M in (4)), an 'external' Mad- 
elung site potential V'(RA) should be defined as 

The externalpairpotentialfactorsMAE, ascan easily be proven, are all infinite. However, 
since they all contain the same infinite constant term, owing to the unit-cell charge 
neutrality constraint VM(RA) stays finite. Consequently, this singular term is omitted in 
actual calculations, and MAE may be evaluated using Ewald's technique as 1271 

The reason Ewald's method improves convergence is given by the fact that a slowly 
convergent serieshasbeen replaced by tworapidlyconvergingsums, the first one running 
over reciprocal lattice vectors k,,, the second one over direct lattice vectorsRk multiplied 
by the quickly decreasing function erfc(u), the so-called complementary error function: 

In equation (7), uo is the volume of the reference cell and E is an arbitrary parameter, 
whichmay be chosen tooptimizeconvergence. The primeon the reciprocal sumindicates 
that the infinite constant term has to be omitted. In actual calculations attention must 
be paid to the cases RA - RE = 0 or RA - RE = R, (R, being an arbitrary lattice vector)- 
then an additional singular term will occur in the direct lattice sum of equation (7). This 
term is also omitted and, as shown in [27], leads to a correclion term -2E/.\/n. 

Toextract Madelungpotentialsfrom equation (6) thenet charges QEmust be known. 
Since the Madelung site potentials depend on these charges and vice versa, a self- 
consistent scheme is required. To proceed, let QE be 

where ZB is the nuclear charge of atom B and NE is the number of electrons associated 
with it. N E  can be determined by Mulliken's population analysis as 

Q, = - ZB i- NE (8) 
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Here q,counts the electron attributed to the atomic orbitalz,. Thisnumber, similar to 
the molecular case, results from summing products of density and overlap matrix 
elements over all A 0  indices A. Additionally to the molecular situation a sum over lattice 
indices h has to be performed. 

2.3. Madelung matrix elements 

Using equations (8)  and (9) in equation (6)  enables us to compute ‘external‘ Madelung 
site potentials 

with M A ,  given by equation (7). To incorporate these in the usual HF framework, a 
prescription must be given for how to define matrix elements. The best way, of course, 
would be to determine the potential as a continuous function of space, V’(r), and 
then to integrate analytically or numerically. Fortunately, this formidable task can be 
circumvented by noting that the Madelung matrix elements VF;M can be well approxi- 
mated simply from atomic site interaction site potentials, respectively, and overlap 
matrix elements according to 

p i . M  = V‘(RA)S% if p ,  v E A ( 1 1 4  
p v  {VM(RH)sFu if p E A, v E B. (1 lb)  

Here, RH = (RA + RB + R,)/2 is the midpoint between the centres of atomic orbitals 
x; and x’,. Our approximate treatment of the three-centre-like integrals via equation 
(I lb)  is similar to the well known Mulliken approximation [28] in the sense that pro- 
portionality to the overlap is assumed. However, while hlulliken computes intersite 
potentials by averaging atomic site potentials, we use potentials at intersite positions 
without reference to site Madelung potentials. 

The evaluation of Madelung potentials via equations (6) or (IO) ultimately has its 
basis in the point-charge approximation, which works well if the charges are well apart 
from the AO centres. The approximations concerning ‘diagonal’ (equation (lla)) and 
‘off-diagonal’ (equation (116)) matrix elements go beyond this and are examined in 
detail in the appendix. To prevent us from loss of continuity, the main results are 
summarized: (i) the exact (with respect to the point-charge approach) diagonal matrix 
elements are matched by equation ( l la)  within less than eV if the point charges are 
about 4 8, away from atom A ;  (ii) the ‘exact’ off-diagonal elements are non-negligible 
and are approximated by equation ( l l b )  to roughly eV if the point charges are 
about 8 8, apart from the midpoint between centresA and B. Furthermore the appendix 
shows how equation ( I l b )  could be improved further by computing the Madelung 
potentials at ‘weighted’ midpoints between AO centres rather than at the geometrical ’ 

ones. In short, the additional approximations (lla) and (l lb) match the requirements 
necessary for the point-charge approximation. 

In the next section we shall see that the computational procedure we use in actual 
calculations meets all the requirements concerning distances between point charges and 
either atoms or midpoints between atoms. As a consequence, equations (10) and (11) 
are good representations of the ‘true‘ external Madelung potentials and elements, 
respectively. Note that this is accomplished without additionally complicated com- 
putations: the Sym have to be evaluated anyhow, and the site potentials are easily 
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calculated if a population analysis has been performed and once the external pair 
potential factors have been determined. 

As soon as the Madelung matrix elements are known, the original Fock matrix may 
be corrected as 

FM(P) = F(P) +. VM(P) (12) 

to yield the new matrix FM. We stress that the Madelung matrix VM depends on the same 
density matrix P as the usual electron-electron interaction does. Thus self-consistency 
for both terms is achieved simultaneously. Self-consistency is not restricted to the 
evaluation of Madelung potentials with the help of Mulliken populations. Any P- 
dependent alternative scheme could have been used. for instance Lowdin’s technique 
to start from orthogonalized atomic orbitals [29]. 

3. Computational details 

For our HFLCAO CO calculations we use the program package CRYSTAL developed by 
Pisanietu![ll, 301 and modified by ourgroup [31,32]. In the OriginalversionofCRYsTAL, 
long-range Coulomb forces enter into the computational scheme as aclassical Madelung 
correction to the quantum-mechanical total energy [ll]: 

E‘O‘ = kTr[P(H + F)] + VNN + EMad(RM) (13) 

where 

is the external Madelung energy arising from Coulomb interactions between cells with 
distanceslarger than theMadelungradiusRM, and V,, is thenucleus-nucleus interaction 
energy for nuclei within the HF zone. Note that the net charges qA and qs in (14) 
differ from our effective charges QB (equations (8) and (9)) in that they result from 
wavefunctions obtained by diagonalizing Madelung-uncorrected Fock matrices. Thus a 
‘quantum’ zone is separated from a ‘classical’ zone by the Madelung radius RM. The 
quantum zone itself in CRYSTAL is further partitioned into a ‘bielectronic’ zone, where 
two-electron integrals are evaluated exactly, and a ‘monoelectronic’ one, where these 
are approximated via a multipole expansion as one-electron integrals. The basic features 
are graphically displayed in figure 1. 

Inthepresent work the’quantum’zoneinanapproximatewayisextended toinfinity. 
Since the major contributions to the Madelung potentials originate from point charges 
lying deepin the Madelungregionor at least farawayfrom~ocentres, the requirements 
for the applicability of equations (11) are fulfilled. Problems might arise if the lattice 
vectorR,pointingto thece l lwhere~~X!  islocatedobeys thecondition [RI[ = lRMl, i.e. 
the atomic orbital xi comes close to strongly contributing point charges. In this case, 
however, the corresponding matrix elements are small owing to the small overlap 
between x: and XL-hence the error is negligible. 
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U 
. e . . . .  

Figure 1. Evaluation of Coulomb integrals in CRYSTAL: la, bielectronic zone; Ib, mono- 
electronic zone; 11, Madelung zone with Madelung radiusR,. 

4. Applications 

We are now in the position to apply the formalism to selected systems. In choosing 
appropriate model compounds, we were guided by the following considerations: neither 
fully non-ionic nor fully ionic species should be good candidates, since in the first case 
the external Madelung potential iszero, while in the second it will not be able to increase 
ionicity further. Larger differences, especially in the charge distributions, are to be 
expected for species of intermediate ionicity. Moreover, the model systems should be 
simple enough to allow for detailed investigations, but they should be realistic enough 
to make comparisons possible with experiment and other calculations, respectively. 
Thus boron nitride in hexagonal (ZD) and cubic (3D) modifications as well as carbon 
monoxide layers were studied. 

4.1. Hexagonal boron nitride (HEN) 

The most important modifications of solid BN are the hexagonal (henceforth HBN) and 
cubic (CBN) forms. These are the crystallographic analogues to graphite and diamond, 
respectively. As may be seen from figure 2(a), HBN consists of honeycomb-like layers, 
which are weakly coupled with neighbouring layers mainly through van der Waals type 
interactions. Thus, similar to graphite, HBN can be idealized as a ZD system while CBN 
(figure 2(b)) clearly cannot. 

Both HBN and CBN have been investigated theoretically on the W LCAO CO level [33, 
341 using the local-exchange approximation [35] or semiempirical schemes [36]. Dovesi 
et all331 computed cohesive energies and equilibrium lattice parameters for HBN and 
CBN by applying a standard STO-30 (Slater-type orbitals, three Gaussian) basis set [37]. 
Thetheoretical bindingenergieswereahout 3.2 eVtoosmallcomparedwithexperiment 
( E ,  = 13 eV/cell) while the calculated lattice parameters agreed to within less than 
0.1 .&with measured values. The positive net charges on boron were 0.50 and 0.21 for 

In our own work we performed analogous calculations with somewhat improved 
truncationcriteria. Calculations without and withMadelungcorrections were compared. 

Let us first consider energetics in the form of potential curves. For HBN, three curves 
representing three different methods are displayed in figure 3(a). These three curves 
refer to the following cases: (1) no Madelung correction, (2) Madelung correction to 

HBN and CBN, respectively. 
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(Q) (6) 
Figure 2. Crystal stmmrc3 oI (a )  hexagonal and (b) cubic boron nitride (HBN and CBN, 
respectively). 
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45 

Figure 3. ( a )  STO~G potential NNeS for I": 1. no Madelung mnection: 2, Madelung 
correction to total energy; 3. Madelung correction rototalenergyand Fock matrix. ( 6 )  Net 
charge on B without (lowercurve) and with (upper curve) Madelung correction. 

only the total energy (equation (13)) and (3) Madelung correction to both the Fock 
matrix and the total energy. First of all we mention that the computed minima match 
the experimental one (2.51 A) fairly well. More importantly from figure 3 we realize: 
(i) the Madelung correction to only the total energy is negative (-0.16 eV at a lattice 
parameter of 2.51 and IRMI = 12.55 A); (ii) the Madelung correction to the Fock 
matrix further stabilizes the systems. Probably because of the less restricted truncations 
we use, in comparison to 1331 our binding energies are somewhat closer to experiment 
(about 11.4againstabout9.8eVat2.51 Aforcurve2),but arestilltoosmall. Thuscurve 
3 has to be preferred to curve 2, and curve 2 has to be preferred to curve 1, i.e. 
the successive improved inclusion of Madelung effects successively improves binding 
energies. However, while the difference between curves 1 and 2 is important, case 3 
only brings a very small additional energy lowering (0.03 eV at 2.51 A). 

Are there more significant changes in the wavefunction 'measured' by calculated 
effective charges? Figure 3(b) gives positive effective charges on boron in HBN for 
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Table 1. Total energies (eV) for HBNobtained WithClementi’sMB for different lattice vectors 
(row 1). The energies E , ,  E ,  and E 3  correspond to the cases 1,2 and 3 of figure 3. Rows 5 
and6giveuocorrected (QP)andmrrected (QY)chargeson B(in uoitsof lei). 

~~ 

o ( a )  2.46 2.485 2.51 2.56 

E ,  -2151.1186 -2151.2055 -2151.2594 -2151.2658 
El -2151.4190 -2151.5052 -2151.5516 -2151.5562 
E3 -2151.5864 -2151.6495 -2151.2594 -2151.6629 

Q% 0.652 0.654 0.656 0.653 
QeM 0.775 0.773 0.770 0.761 

different lattice spacings, obtained via Mulliken’s analysis. One immediately recognizes 
that ionicityincreases if Madelungpotentialsare considered in aself-consistent manner. 
This is due to the fact that for HBN the Madelung potential acts in a stabilizing fashion- 
thus the more ionic species will be preferred. A closer examination shows that the 
smaller the B-N distances, the larger is the charge separation between both kinds of 
atoms. In parallel, an increasing Madelung correction to the total energy can be 
observed. This is simply because the Madelung potentials in absolute values are large 
for small lattice constants, since the pair potential factors are large. Since HBN becomes 
more ionic by about 15% due to the external Madelung potential, we may conclude that 
the exact evaluation of strongly wavefunction-dependent quantities (charge distri- 
bution, form factors, bond orders, dipole moments, etc) requires the inclusion of 
Madelung effects already for species of moderate ionicity. 

To gain some more realistic insights into the significance of Madelung effects, the 
above calculations were repeated with Clementi’s minimal basis (MB) set [38] (con- 
traction schemes for both B and N: (73)/[21]), which usually yields total energies nearly 
of double-zeta quality. Table 1 shows total energies (rows 2 4 )  and charge distributions 
(rows 5 and 6), respectively. 

Compared to Pople’s STO-3G, the total energies appear to be lower by about 21 eV. 
However, these absolute values are much less interesting than the changes due to 
Madelung corrections, which as before are introduced step by step, i.e. the original 
potential curve (row 2) is first, then only energy-corrected (row 3) and then also Fock- 
matrix-corrected (row 4). We recognize (row 3 versus row 2) that the extemal Madelung 
energy again is negative, but somewhat larger than in the STOJG case (-0.30 against 
-0.16eVat2.51 A), Thisis becauseClementi’s basispredictsmoreionicspeciesalready 
without Madelung corrections-in turn the latter become more important. Conse- 
quently total energies (row 4 versus row 2) and charge distributions (row 6 versus row 
5) change more dramatically than before. 

Since the Madelung technique improves total energies only by a small amount and 
since any charge partitioning scheme is somewhat arbitrary, an unambiguous criterion 
for the quality of the method is required. This criterion can be extracted from recalling 
figure 1: if the Madelung radius IR,l is extended to infinity, the ‘external’ Madelung 
matrix elements will become so small that the difference between corrected and uncor- 
rected Fock matrices must vanish. Thus, with respect to both total energies and net 
charges, the same limiting values must result. Figures 4(a) and (b)  give total energies 
and boron net charges, respectively, for uncorrected and corrected calculations as a 
function of the Madelung radius IRMI (the lattice parameter is fixed at 2.51 A). 
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Figure 4. ( U )  Dependence of total energies on lRMl wilhoul (upper curve) and with (lower 
curve) Madelung correction. ( b )  Dependence of boron net charges on lRuI without (lower 
curve) and with (upper curve) Madelung correction. 

We recognize that Madelung-uncorrected total energies and net charges significantly 
decrease and increase. respectively, with increasing lRMl. However, if Madelung poten- 
tials are considered self-consistently. these quantities show only small variations if the 
Madelung radius is enlarged. More importantly, the corrected curves appear to be close 
to the exact, i.e. converged values from the beginning, even for small lRMI. Thus the 
more ionic picture is the more realistic one. Since the computational effort closely 
parallels increasing IRMl. we conclude that more realistic band structures are obtained 
with less computing time if our self-consistent Madelung technique is adopted. 
Moreover, since for instance the effective charges appear to be very sensitive to lRMl, 
finite point-charge environments with fixed charges seem to be inadequate to describe 
the real effects properly. Both the long-range behaviour of ionic forces (because of their 
comparatively weak dependence on distances) and the self-consistent determination of 
effective charges (because the potential is proportional to them) are of importance. 

4.2. Cubic boron nifride (CBN) 

For 3~ solids the practical difficulties associated with large Madelung radii are more 
serious than in ZD. On the other hand-at least for ionic and medium ionic crystal+ 
Madelung effects are more important. Thus it is to be expected that the power of a self- 
consistent Madelung scheme will fully develop. 

Figure 5(u) for CBN shows the same three potential curves as figure 3(u) did for 
HBN. These curves again were computed using Pople's 510-3G. Similar to HBN, the 
experimental lattice parameter (3.62 A) is reproduced fairly well in all cases. More 
important for our purposes, we note that the (external) Madelung energy (curve 2 
versus curve 1) is negative, but twice as large as for HBN (-0.29 and -0.16eV at the 
experimental lattice parameters of 3.62 and 2.51 A, respectively). Thus Madelung 
corrections are more important to 3~ than to 2D systems. If one takes the Madelung 
potentials self-consistently into account (curve 3), this further lowers the total energy- 
as in ZD. But now compared to HBN an additional 'energy gain' larger by a factor of 6 
(0.17 versus 0.03 eV at 3.62 and 2.51 A, respectively) is found with Pople's~~O-3~. This 
is simply because Madelung corrections enter in the form of a threefold sum in 3D, while 
in ZD only a twofold sum contributes (see equation (6)) .  
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Figure 5. As figure 3, but for CBN. 

Table 2. External Madelung energies (mew lor different coverages of CO layers of hex- 
agonal symmetry. Row 2: Madelung-wrrected case; row 3 Madelung-uncorrected case. 

EM”d (corr.) 18.2 37.3 54.9 
EMra (uncorr.) 19.0 41.4 66.7 

The wavefunctions ‘measured’ via effective charges change even more dramatically 
owing to the self-consistent Madelung potentials. While for CBN the net charge on B 
increasesfrom +0.22to + O S 1  (at 3.62,&), thecorrespondingvaluesforHBN were +0.48 
and +0.56,respectively(at2.51 A). Thus, theMadelungpotentialproducescomparable 
effective charges for ZD and 3~ boron nitrides. This seems to be reasonable, since the 
large 3D Madelung potential compensates for the fact that the equilibrium B-N distance 
islargerfOrcEN than fOrHBN(1.56verSuS 1.45A). 

4.3. Layers of carbon monoxide 

Up to now we have considered systems that became more ionic due to a stabilizing 
Madelung potential. Layers of parallel oriented carbon monoxide molecules are 
examples where the Madelung potentials act in a destabilizing manner. Clearly those 
layers are models of chemisorption and catalytic processes. To be specific, we consider 
hexagonal arrangements of CO molecules. If molecule-molecule separations of 4.35, 
3.29 and 2.51 8, are chosen, this corresponds to the real situations of CO adsorbed on 
Co(OOO1)forthethreecoveragesB1 = 1/3, B2 = 7/12and03 = l/l,respectively. While 
the first two coverages have been observed experimentally, the ‘dense phase’ B3 is 
hypothetical [39]. Theoretically all three coverages have been investigated 139,401. 
These investigations mainly focused on the interaction between metal surface and 
adsorbate molecules. However, we are more interested in the interaction between 
adsorbate molecules, especially via long-range Coulomb forces. Thus we omit the 
surface and take only carbon monoxide molecules into account, the C-0 distance being 
fixed at 1.15 A. 

ApplJ.ingClementi’sminima1 basis ( M E )  (contractionscheme for both Cand 0: (73)/ 
[21]), the external Madelung energies given in table 2 were computed (for the three 
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Table 3. Effective charges on C (in units of lelj for difierent coverages of CO layers ol 
hexagonal symmetry. Q:: Madelung-corrected case; Q$: Madelung-uncorrected case: 
Qc(cluster): cluster calculation. 

e 113 7/12 111 

Q$ +0.338 +0.327 +a277 

. ..,. 
Q? +0.329 +0.310 +0.251 

Qc(c1usterj +0.367 +0.364 +0.355 

Figure 6. Cluster model for adsorption of CO 

coverages the number of internal. i.e. HF, lattice vectors was constant: M = 91 in 
equations (4a) and (4b)). The values in the second row were obtained from equation 
(14) withself-consistently correctednet charges,while the third row arisesfrom effective 
charges calculated without Madelung correction. We recognize that the Madelung 
energies (i) are positive. (ii) are larger for the unmodified Fock matrices and (iii) act in 
a more destabilizing manner the smaller the CO-CO distances, i.e. the larger the 
coverage. To understand this we refer to table 3, where effective charges on carbon are 
listed. The second and third rows wrrespond to Madelung corrected and uncorrected 
band-structure calculations, respectively. The fourth row results from a cluster model 
for CO chemisorbed on Co(000 1). This model consists of three parallel CO molecules, 
arran ed in an equilateral triangle (see figure 6) with edge lengths b of 4.35, 3.29 and 

the case of the cluster (Q, > +0.35 for all coverages). Taking into account more- 
neighbour interactions via the usual HF LCAO CO calculation (row 3) significantly lowers 
the charge separation between carbon and oxygen. If now, additionally, the external 
Madelung potential is ‘switched on’ (row Z), the net charges are diminished further. 
Thus, the destabilizing Madelung effects, in contrast to boron nitride, tend to lower 
ionicity. These effects appear more clearly, the more neighbours are explicitly or 
approximately taken into account or the smaller the lattice parameters. There is a very 
simple physical interpretation for the behaviour sketched above: from figure 6 one 
realizes that the intermolecular C-Cdistanccs are always smaller than the intermolecular 
C-0 distances. This is true for any molecule-molecule separation. Thus, net charges of 
the same sign destabilize more strongly than net charges of opposite sign stabilize- 
the overall Coulomb interaction is positive, and the more positive the smaller the 
intermolecular separations. To lower the total energy, higher coverages will produce 

2.51 j ’  to simulate e,, O2 and e,, respectively. We note that the system is most ionic in 
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less ionic species. If Madelung potentials are considered properly, i.e. if long-range 
Coulomb forces are allowed to act more effectively, the charge separation in CO layers 
is small for any 8.  

5. Conclusion and future aspects 

In conclusion, we have shown that the Ewald method in connection with an appropriate 
density-matrix-dependent population analysis (here Mulliken’s technique) provides a 
promising way of treating long-range Coulomb interactions io ionic or partially ionic 
crystals within the usual w LCAO CO scheme. Apart from the external pair potential 
factors with respect to ordinary calculations no new quantities have to be computed. 
Thus our scheme treats important effects in a computationally simple and economic 
way, especially in the case of 3D solids. 

For the species we treated in this work (ZD and 3D, intermediate ionicity) it turned 
out that mainly the wavefunctions are influenced by the Madelung potentials, while 
energy-related quantities are less affected. These systems become more and less ionic, 
respectively, in the cases of stabilizing and destabilizing potentials. For 3 0  species or if 
better basis sets were used, these effects were even more distinct. 

It should be noted that the above scheme bears potentially interesting extensions 
and applications. So it seems possible to use self-consistent Madelung potentials instead 
of hundreds and thousands of fixed point charges to perform calculations on clusters 
modelling ionicsolids. Secondly, surface Madelung potentials should be easily obtained 
by first halvingthebulkpairpotentialfactorsandthenaddinghalfofthez~pairpotential 
factors. Thus-neglecting relaxation and charge-transfer effect-lab calculations 
might be replaced by ‘single layer plus Madelung potential’ computations in the case of 
ionic species, such as for instance metal oxides. Caution should be exercised if long- 
range dipole effects are of importance-they are not accounted for correctly by this 
crudeapproximation. Moreover, since pair potential factorsare purelygeometry-depen- 
dent, i.e. lattice-dependent, quantities, by defining average effective charges it is 
possible to include doping effects approximately. These average charges are simply 
determined by the respective doping value(s) and give rise to modified Madelung 
potentials. Last but not least it makes Sense to treat only a subunit of a crystal explicitly, 
while the rest is considered via an appropriate Madelung potential. 

These lines of research are in progress in our laboratory. As an example, the band 
structure of a single Cu02 plane, modelling the 3D high-?; superconductor 
La,_,Sr,CuO,, has been determined at different dopingvaluesx, taking charge-transfer 
effects and a (fixed) 3D Madelung potential into account [41]. 
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Figure 7. Cluster model used for numerical justification of equations (1 la) and (l lb) 
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Appendix 

Here we examine the quality of the approximation of Madelung matrix elements by 
products of site and intersite potentials (equations (l la) and (116)). We use simple 
clusters plus point charges as models, since the Madelung technique as a whole is based 
on the point-charge approach. 

A . l .  Numerical results 

Let us consider the arrangement given in figure 7, consisting of two atoms A and B at 
positions RA and R,, respectively, and a single point charge C (at Rc) carrying one 
positive elementary charge (Qc = + lei). The distance between A and Cis IRA - RcI, 
while Cis away from the midpoint between A and B by I(R, + R8)/2  - Rcl. 

According to equation (l la) the approximated 'diagonal Madelung matrix element' 
(the 'Madelung' potential is caused by the single point charge in our example) is 

VFv = V'(R~)S, ,  = - (Qc/~RA -Rcl )S , ,  (Al) 

with p, Y E A, while the exact matrix element is 

Both the exact (column 2) and approximated (column 3) matrix elements are listed in 
table 4 for different distances (RA - Rc( (column 1) forthe special case ofA = hydrogen 
and p = v = 1s (Clementi'sMB used). 
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Table 4. Exact (v,”., column 2) and approximated ( V Z ,  column 3) ‘diagonal Madelung 
matrix elements’ for p = Y = H Is and different IRA - Rcl (energies in ev). Column 4 gives 
the error. 

IRA - RcI (A) v: V,., A 

0.65 -17.89647 -22.29130 4,30483 
1.12 -12.26888 -12.84119 0.57231 
1.63 -8.75966 -8.83275 0.07309 
2.15 -6.69295 -6.70068 0.00773 
2.67 
4.25 

-5.38886 -5.38943 0.00057 
-3.38830 -3.38830 

5.30 -2.71436 -2.71436 <IO‘’ 

Table 5. Same as table 4. but for off-diagonal element p = H Is, Y = Li 2s and different 
+ R d / 2 - R c l .  

KRA + R d / 2  - Rcl (A) vg v: A 

1.06 -5.07804 -5.21512 0.13708 
2.12 -2.59140 -2.60756 0.01616 
4.23 -1.30173 -1.30377 0.00204 
7.94 -0.69503 -0.69535 0.00033 

13.23 -0.41713 -0.41721 O.OWO8 

We recognize that the error (column3) drops below eV for distances IRA - Rcl 
larger than 4 A. Using a double-zeta basis did not lead to a different conclusion. The 
‘off-diagonal’ matrix elements in the approximation (Ilb) are 

(p E A ,  v E B ) ,  while the exact elements are given by the following expression: 

We introduced some asymmetry by choosing A = hydrogen and B = lithium (RAB = 
0.77.&). The values for the exact (column 2 )  and approximated (column 2)  matrix 
elementsbetween a H  IsandaLi 2sfunction (Clementi’s~Pused) are displayedin table 
5 for different distances I(RA + R B ) / ~  - RcI. 

From there we see that the matrix elements are smaller with respect to the diagonal 
ones, but non-negligible. Moreover, column4oftable 5 showsus that theerror decreases 
more slowly than in the diagonal case, but becomes about eV and smaller for 
distances of 8 8 ,  and above. Besides the discussed matrix element others were 
considered, other basis sets were used and more point charges were introduced. The 
result was that approximation (A3) and hence (Ilb) turned out to be stable against all 
these variations. Especially, owing to symmetry, exact elements that are zero are also 
zero in the aproximated case. Since in actual calculations we use Madelung radii IRMI of 
the order of magnitude of 10 8, and more, from the above numerical investigations 
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the conclusions may be drawn that (i) the Madelung (point-charge) approximation is 
justifiedand(ii)theadditionalapproximations(lla) and(l1b)areaccurate withinabout 

eV. 

A.2. Analytical results 

Numerically the validity of equations (11) has been justified. We now want to show 
analytically why these equations work and how the approximation for the non-diagonal 
elements can be further improved. 

Since in our quantum-chemical treatment of molecules and solids Gaussian-type 
expansions of Slater functions are used, let us restrict ourselves for simplicity to single, 
unnormalized, s-type Gaussian basis functions: 

, yr (r -RA)=exp(-Lulr -RA12)  (-45) 
x,(r - R E )  = exp(-Plr - R A 2 ) .  646) 

Using (AS) and (A6) andstandardmathematical tools [42], thegeneralexact ‘Madelung’ 
matrix element (A4) becomes 

where 

and 

The tegr, F[u] convergesrapidly for moderately ~ rge v u ,  i.e. for moderately large 
distances between point charge C and the midpoint of A and B,  and approaches the 
limiting value v(n/4u). Thus in thislimitingcase V$, may be approximated by 

Recalling that overlap matrix elements between primitive Gaussians are’ 

we finally have 

Let us distinguish between two cases: 

(i) RB = RA. Thissituation fixes the diagonal matrixelements. From (A12) we obtain 

VFv = - (Q&A - R c l ) S p n  (A13) 
which is identical to the expression (Al). Thus (Al) and hence (lla) are exactly fulfilled 
if IRA - Rcl is large. 
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(ii) R ,  # R A .  This non-identity corresponds to the off-diagonal mat+ elements, for 
which (A12) is the analytical limiting value. If, additionally, the two Gaussians have the 
same exponents (Y = p ,  then 

which is identical to (A3). Thus (A3) and hence (llb) are exactly fulfilled for I(Ra + RB)/  
2 - Rc[ large and CY = p. If different Gaussians enter in (A12), then (A3) and hence 
(llb) contain an additional approximation. This approximation may be removed by 
evaluating the Madelung potentials at the centres of products of Gaussians (Rp) rather 
than at midpoints between atoms. However, since the error is small and the correction 
had to be performed on the level of primitive Gaussians, i.e. at the price of considerable 
additional computational effort, we decided to use approximation (llb) instead of a 
‘weighted’ variant. 
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