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Abstract. A new method for the self-consistent treatment of Madelung potentials within the
usual Hartree-Fock-Roothaan scheme for periodic systems is presented. The new approach
is based on Mulliken’s population analysis and Ewald’s rapid-convergence technique for the
evaluation of lattice sums, The method is applied to two- and three-dimensional crystals
of intermediate ionicity. We find that, while enerpy-related quantities are less affected,
wavefunction-related observables depend strongly on the proper consideration of Madelung
effects. Depending on the respective system, the Madelung potentials act to enhance or
lower ionicity. The higher the crystal dimensionality, the more important are the Madelung
corrections.

1. Introduction

The extent of ionicity in a given crystal may extensively fix its physical properties. So
from the classical theories of Born and Landé [1] and Madelung [2] we know that the
lattice energy of ionic solids can be well reproduced by considering a repulsive and an
attractive term, the latter being solely determined by the Coulomb interaction between
ions. Secondly, it has been emphasized that lattice dynamics is strongly governed by
electrostatic interatomic potentials [3]. To give a third example let us point to surface .
chemistry: the catalytic activity of several metal oxides depends to a large extent on the
surface Madelung potential [4].

Not only the interaction between particles with large net charges, but also more
general long-range Coulomb forces that are present even in solids consisting of mod-
erately charged subunits, may cause a surprise. Brédas [5] has shown for polyethylene
that, if long-range contributions are properly handled, the zig-zag conformation in
agreement with chemical intuition is more stable than a gauche form. Ignoring these
contributions led to the opposite conclusion.

From a theoretical point of view the question arises, how to treat classical Madelung
sums and (more general) long-range forces. The problem we face with lattice sums is
their poor convergence, especially if two- (2D) and three-dimensional (3D) species
containing highly charged ions are under consideration. Two classical, rapidly con-
verging methods for the evaluation of Madelung sums have been proposed by Ewald {6]

0953-8984/91/162621 + 18 $03.50 © 1991 IOP Publishing Ltd 2621



2622 P Saaifrank

and Evjen [7], respectively. In the latter method, lattice sums are analysed by grouping
contributions into shells of vanishing net charge, while in the former case the original
Madelung series is replaced by two quickly converging sums {see below). Improved
versions of both techniques have been developed [8, 9].

Later, for instance, Metzger [10] used Ewald’s method within a semictassical frame-
work to compute the total energies of several ionic crystals containing organic molecules.
In these studies the charges of the constituents had to be presumned, i.¢. different point-
charge arrays had to be compared. Pisani et al [11], to obtain improved total energies
for ionic systems, corrected their usual quantum-chemical ab initio calculations for the
long-range Coulomb part, again applying Ewald-type summations. They took the net
charges necessary for evaluating corrected total energies from a preceding ab initio
treatment, but Madelung potentials did not enter into the Fock matrix (see below).

Some kind of self-consistency in semiempirical schemes, for example, wasintroduced
by Wangetal [12] to describe properly ionic molecules and solids on the extended Hiickel
level [13] (‘iterative extended Hiicke] theory’). This was managed by adjusting the
empirical parameters iteratively to the respective atomic orbital occupations. There are
also several quasi-self-consistent and self-consistent schemes for incorporating ionic
effects in local-exchange density-functional-type computations [14, 15]. In the feld of
ab initio Hartree-Fock, linear combination of atomic orbitals, crystal orbital (HF LCAO
co) investigations of solids [16, 17], the work of the Namur polymer group has to be
emphasized. To treat long-range electrostatic interactions in a seif-consistent manner,
two main approaches were developed, namely (i) a combination of the multipoie expan-
sion technique with the Riemann zeta function [18, 19] and (i} the Fourier [20-22]
and Laplace transform [23] methods. These different techniques were applied to one-
dimensional solids ( polymers).

In this work we present a new and computationally simple scheme to treat Madelung
effects self-consistently in the framework of the usual MF LCAO CO technique. The
ingredients for our method are Ewald’s lattice summation and Mulliken’s population
analysis [24].

The paper is organized as foilows. In section 2 the theoretical background is devel-
oped. Subsections review the usual HF LCAO cO method. describe the computation of
Madelung site potentials via Ewald sums and show how Madelung matrix elements are
evaluated. Section 3 gives some details concerning the computational realization. In
section 4, investigations on hexagonal 2D and cubic 30 boron nitride as well as on layers
of carbon monoxide molecules are presented. A finalsection, 5, gives several conclusions
and points to some potential extensions of the method. In an appendix the approxi-
mations concerning the Madelung matrix elements are justified both numerically and
analytically.

2. Method

2.1. Long-range problems in HF LCAO cO schemes

Though the standard HF LCAO CO method, which we use as a starting point for the self-
consistent inclusion of Madelung potentials, is well described elsewhere [16, 17], for
future reference the basic equations are reviewed.
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Applying the method, the pseudo-eigenvalue problem
Fk)e, (k) = &,(k)S(k)c, (k) ey

has to be solved for different k-vectors belonging to the first Brillouin zone (Bz) and for
different co indexed by n. In (1), ,(k) gives the dispersion of the nth band, while ¢,(k)
contains the coefficients for the LcAO expansion of the nth Co as a function of quasi-
momentum k. Moreover F(k) and $(k) are Fock and overlap matrices in reciprocal
space, respectively, their elements being related to configuration-space quantities by

N

Fuu(6) = 2 explik- R)f Y, (2a)
pm
N

S, (k) = 2 exp(ik - R,) SY,. (26)
j=0

(Here Greek letters represent atomic orbital (A0) indices, and arabicletters cell indices. )
In principle, for an infinite crystal the sum over lattice vectors R; tends to infinity. The
Fock matrix elements in direct space
fh =T +2% + CY% + XY, (3)
contain kinetic (T%,), nuclear attraction (Z9,), electron—lectron repulsion (CY,) and
exchange (X7,) terms, the Coulomb interaction terms Z%, and CY, being given by
M Kg

Z%=-2 3 <x,1(r)

h=08=1

-——'—R—| ‘ X u(r)> (4a)

ngu = 2 E Pw\. <x,u(r1)Xa(r?.)

k=00,

| ). (@)
Here, % is the A0 o in cell a characterized by the lattice vector R,; Zg is the nuclear
charge of atom B (K atoms per cell}; and P% represents an element of the density
matrix, calculated from LcAo coefficients by integration over the occupied part of the
first BZ. Again, as in the case of equations (2}, the summation over lattice indices & and
{ in (4} has to be performed to infinity. In practice only latt:ce vectors up to Ry are
considered, which we call the ‘Madelung radius’.

As shown elsewhere [25], the Fourier expansion (equations (2)) converges very
rapidly for overlap, kinetic and exchange terms. However, the electrostatic summations
(42) and (4b) individually diverge. Combining both leads to a conditionally convergent
series, but convergence is very slow owing to the delicate balance between negative
(nuclear attraction) and positive (electron—electron) contributions. The situation even
deteriorates for (i) ionic or partially ionic solids with large effective atom charges
and (it} systems of dimensionality higher than 1 [26]. In these cases, owing to the
computational effort in treating many-neighbours interactions, only simple systems can
properly be handled on the ab initio level.

2.2. Madelung site potentials

The above-mentioned lattice summations of electrostatic interactions in quantum chem-
istry perfectly match the classical Madelung problem. We shall adopt Ewald’s rapid-
convergence technique to correct the Coulomb integrals of equations (4a) and (4b) for
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their long-range part, i.e. we shali perform, as usual, the lattice sums explicitly only up
to a (not too large) number M, and then add ‘external’ Madelung matrix elements.

If K5 again is the number of atoms per unit cell and each atom B is carrying an
effective charge (0, then

VMR ) = i 2

— EM 0 5
neo 5ot |Ra _RB_R}:' B8 )

is the total Madeilung potential at site R4 (M 45 is a short-hand notation for the lattice
sum ‘pair potential factors’). Since the short-range electrostatic contributions are already
included in the standard HF treatment (summation up to M in (4)), an ‘external’ Mad-
elung site potential VM(R,) should be defined as

VMR,) = 2 2
h=M+1 B= llRA _RB _Rh'
The external pair potential factors M 4 g, ascaneasily be proven, are allinfinite, However,
since they all contain the same infinite constant term, owing to the unit-cell charge
neutrality constraint VM(R,) stays finite. Consequently, this singular term is omitted in
actual calculations, and M 45 may be evaluated using Ewald’s technique as [27]

EB:MABQB' (6)

4~ 1 kK2
M,.,B=— 2 3 exp(~ﬁ+1k,,-(RA—R3))
-+ ~——-———erfc E[Ry—Rpg—Ry|). 7
thA'—RB RI (I A B n‘ll) ()

The reason Ewald’s method improves convergence is given by the fact that a slowly
convergentserieshas beenreplaced by tworapidly converging sums, the first one running
over reciprocal lattice vectors &, the second one over direct lattice vectors R, multiplied
by the quickly decreasing function erfc(u), the so-called complementary error function:

erfc(u) = -{%f exp(—£2) dr.

In equation (7), vq is the volume of the reference cell and ¢ is an arbitrary parameter,
which may be chosen to optimize convergence. The prime on the reciprocal sum indicates
that the infinite constant term has to be omitted. In actual calculations attention must
be paid to the cases R4 — Rz = 0or R, — R = R, (R, being an arbitrary lattice vector)—
then an additional singular term will occur in the direct lattice sum of equation (7). This
term is also omitted and, as shown in [27], leads to a correction term —2¢/V .

Toextract Madelung potentials from equation (6) the net charges Q s must be known.
Since the Madelung site potentials depend on these charges and vice versa, a self-
consistent scheme is required. To proceed, let Og be

Qp=—Zz+Np (8)

where Z g is the nuclear charge of atom B and Ny is the number of electrons associated
with it. N can be determined by Mulliken’s population analysis as

Ne= 2 q, (92)

oS8

=§§%m. (9b)
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Here g, counts the electron attributed to the atomic orbital x,,. This number, similar to
the molecular case, results from summing products of density and overlap matrix
elements over all A0 indices A. Additionally to the molecular situation a sum over lattice
indices 4 has to be performed.

2.3. Madelung mairix elements

Using equations (8) and (9) in equation (6) enables us to compute ‘external’ Madelung
site potentialg

Kg

VIR = 3 My (- 25+ 3 3, 5 PYs) (10

B=1 h oEB i
with M, given by equation (7). To incorporate these in the usval HF framework, a
prescription must be given for how to define matrix elements. The best way, of course,
would be to determine the potential as a continuous function of space, VM(r), and
then to integrate analytically or numerically. Fortunately, this formidable task can be
circumvented by noting that the Madelung matrix elements V %;™ can be well approxi-
mated simply from atomic site interaction site potentials, respectively, and overlap
matrix elements according to

{VM(RA)S?{,, if u,rEA (11a)
VM(R4)SY, if nEA,vEB (11b)

Here, Ry = (R4 + R + R;)/2 is the midpoint between the centres of atomic orbitals
x5 and y/,. Our approximate treatment of the three-centre-like integrals via equation
(11b) is similar to the well known Mulliken approximation [28] in the sense that pro-
portionality to the overlap is assumed. However, while Mulliken computes intersite
potentials by averaging atomic site potentials, we use potentials at intersite positions
without reference to site Madelung potentials.

The evaluation of Madelung potentials via equations (6) or (10) ultimately has its
basis in the point-charge approximation, which works well if the charges are well apart
from the AO centres. The approximations concerning ‘diagonal’ (equation (11a)) and
‘off-diagonal’ (equation (115)) matrix elements go beyond this and are examined in
detail in the appendix. To prevent us from loss of continuity, the main results are
summarized: (i) the exact (with respect to the point-charge approach) diagonal matrix
elements are matched by equation (114) within less than 107° ¢V if the point charges are
about 4 A away from atom A; (ii) the ‘exact’ off-diagonal elements are non-negligible
and are approximated by equation (114) to roughly 107* &V if the point charges are
about 8 A apart from the midpoint between centres A and B. Furthermore the appendix
shows how equation (11&4) could be improved further by computing the Madelung
potentials at ‘weighted’ midpoints between AO centres rather than at the geometrical *
ones. In short, the additional approximations (11a) and (116) match the requirements
necessary for the point-charge approximation.

In the next section we shall see that the computational procedure we use in actual
calculations meets all the requirements concerning distances between point charges and
either atoms or midpoints between atoms. As a consequence, equations (10) and (11)
are good representations of the ‘true’ external Madeiung potentials and elements,
respectively. Note that this is accomplished without additionally complicated com-
putations: the S¥, have to be evaluated anyhow, and the site potentials are easily

M —
nv
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calculated if a population analysis has been performed and once the external pair
potential factors have been determined.

As sgon as the Madelung matrix elements are known, the original Fock matrix may
be corrected as

FMYPY = F(P) + VM(P) (12)

to yield the new matrix FM. We stress that the Madelung matrix VM depends on the same
density matrix P as the usual electron—electron interaction does. Thus self-consistency
for both terms is achieved simultaneously. Self-consistency is not restricted to the
evaluation of Madefung potentials with the help of Mulliken populations. Any P-
dependent alternative scheme conld have been used, for instance Léwdin's technique
to start from orthogonalized atomic orbitals [29].

3. Computational details

For our HF LCAO CO calculations we use the program package CRYSTAL developed by
Pisanieral[11, 30} and modified by our group {31, 32]. In the original version of CRYSTAL,
long-range Coulomb forces enter into the computational scheme as a classical Madelung
correction to the quantum-mechanical total energy [11]:

E© = Tr[P(H + B)] + Vi + E¥9(R);) 3
where
Kg
EM“d(RM)=%§ Mapq4qs (14)

is the external Madelung energy arising from Coulomb interactions between cells with
distances larger than the Madelung radius Ry, and Vg is the nucleus—nucleus interaction
energy for nuclei within the HWF zone. Note that the pet charges g4 and g5 in (14)
differ from our effective charges Oy (equations (8) and (9)) in that they result from
wavefunctions obtained by diagonalizing Madelung-uncorrected Fock matrices, Thusa
‘quantum’ zone is separated from a ‘classical’ zone by the Madelung radius Ry The
quantum zone itself in CRYSTAL is further partitioned into a ‘bielectronic’ zone, where
two-electron integrals are evaluated exactly, and a ‘monocelectronic’ one, where these
are approximated via a multipole expansion as one-electron integrals. The basicfeatures
are graphically displayed in figure 1.

Inthe present work the ‘quantum’ zone in an approximate way is extended to infinity.
Since the major contributions to the Madelung potentials originate from point charges
lying deep in the Madelung region or at least far away from Ao centres, the requirements
for the applicability of equations (11) are fulfilled. Problems might arise if the lattice
vector R; pointing to the cell where A0 ¥/, is located obeys the condition |R)| = |Ry(,i.e.
the atomic orbital ¥/, comes close to strongly contributing point charges. In this case,
however, the corresponding matrix elements are small owing to the small overlap
between xﬂ and ¥/, —hence the error is negligible.
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Figure 1. Evaluation of Coulomb integrals in CRYSTAL: Ia, bielectronic zone; Ib, mono-
electronic zone; I, Madelung zone with Madelung radivs Ry,.

4. Applications

We are now in the position to apply the formalism to selected systems. In choosing
appropriate model compounds, we were guided by the following considerations: neither
fully non-ionic nor fully ionic species should be good candidates, since in the first case
the external Madelung potential is zero, while in the second it wili not be able to increase
ionicity further. Larger differences, especially in the charge distributions, are to be
expected for species of intermediate ionicity. Moreover, the model systems should be
simple enough to allow for detailed investigations, but they should be realistic enough
to make comparisons possible with experiment and other calcuiations, respectively.
Thus boron nitride in hexagonal (20) and cubic (3D) modifications as well as carbon
monoxide layers were studied.

4.1. Hexagonal boron nitride (#8N)

The most important modifications of solid BN are the hexagonal (henceforth HBN) and
cubic (ceN) forms. These are the crystallographic analogues to graphite and diamond,
respectively. As may be seen from figure 2(a), HBN consists of honeycomb-like layers,
which are weakly coupled with neighbouring layers mainly through van der Waals type
interactions. Thus, similar to graphite, HBN can be idealized as a 2D system while CBN
(fgure 2(b)) clearly cannot.

Both BN and CBN have been investigated theoretically on the HF LCAO €O level [33,
34} using the local-exchange approximation [35] or semiempirical schemes [36]. Dovesi
et al [33) computed cohesive energies and equilibrium lattice parameters for HBN and
CBN by applying a standard 5T0-3G (Slater-type orbitals, three Gaussian) basis set [37].
The theoretical binding energies were about 3.2 eV too small compared with experiment
(Eg = 13 eV/cell) while the calculated lattice parameters agreed to within less than
0.1 A with measured values. The positive net charges on boron were 0.50 and 0.21 for
HBN and CBN, respectively.

In our own work we performed analogous calculations with somewhat improved
truncation criteria. Calculations without and withMadelung corrections were compared.

Let us first consider energetics in the form of potential curves. For HBN, three curves
representing three different methods are displayed in figure 3(a). These three curves
refer to the following cases: (1) no Madelung correction, (2) Madelung correction to
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(e} ()
Figure 2. Crystal structures of (&) hexagonat and (b) cubic Doron nitride (HBN and CBN,
respectively).

-2129.90 T H
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(a} Ql )

Figure 3. (a) $TO-3G potentiai curves for uBN: 1, no Madelung correction; 2, Madelung
correction to total energy; 3, Madelung correction to total energy and Fock matrix. (5) Net
charge on B without (lower curve) and with (upper curve) Madelung correction.

o
=

only the total energy (equation (13)) and (3) Madelung correction to both the Fock
matrix and the total energy. First of all we mention that the computed minima match
the experimental one (2.51 A) fairly well. More importantly from figure 3 we realize:
(i) the Madelung correction to only the total energy is negative (—0.16 eV at a lattice
parameter of 2.51 A and [Ry]| = 12.55 A); (ii) the Madelung correction to the Fock
matrix further stabilizes the systems. Probably because of the less restricted truncations
we use, in comparison to [33] our binding energies are somewhat closer to experiment
(about 11.4 against about 9.8 eV at 2.51 A for curve 2}, but are still too small. Thus curve
3 has to be preferred to curve 2, and curve 2 has to be preferred to curve 1, i.e.
the successive improved inclusion of Madelung effects successively improves binding
energies. However, while the difference between curves 1 and 2 is important, case 3
only brings a very small additional energy lowering (0.03 eV at 2.51 A).

Are there more significant changes in the wavefunction ‘measured’ by calculated
effective charges? Figure 3(b) gives positive effective charges on boron in HBN for
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Table 1. Total energies (e V) for HEN obtained with Clementi’s M for different lattice vectors
(row 1}. The energies E,, E; and E; correspond to the cases 1, 2 and 3 of figure 3. Rows 5
and 6 give uncorrected (%) and corrected (Q¥) charges on B (in anits of je}).

a(h) 246 2.485 2.51 2.56
E, —2151.1186 —2151.2055 ~2151.2594 -2151.2658
E, —2151.41%0  -2151.5052  —2151.5576  —2151.5562
E, —2151.5864  —2151.6495  —2151.2504  —2151.6629
9 0.652 0.654 0.656 0.653
[ 0.775 0.773 0.770 0.761

different lattice spacings, obtained via Mulliken’s analysis. One immediately recognizes
that ionicity increases if Madelung potentials are considered in a self-consistent manner.
This is due to the fact that for HEN the Madelung potential acts in a stabilizing fashion—
thus the more ionic species will be preferred. A closer examination shows that the
smaller the B-N distances, the larger is the charge separation between both kinds of
atoms. In parallel, an increasing Madelung correction to the total energy can be
observed. This is simply because the Madelung potentials in absolute values are large
for small lattice constants, since the pair potential factors are large. Since HBN becomes
more ionic by about 15% due to the external Madelung potential, we may conclude that
the exact evaluation of strongly wavefunction-dependent quantities (charge distri-
bution, form factors, bond orders, dipole moments, etc) requires the inclusion of
Madelung effects already for species of moderate ionicity.

To gain some more realistic insights into the significance of Madelung effects, the
above calculations were repeated with Clementi’s minimal basis (MB) set [38] (con-
traction schemes for both B and N: (73)/[21]), which usually yields total energies nearly
of double-zeta quality. Table 1 shows total energies (rows 2-4) and charge distributions
(rows 5 and 6), respectively.

Compared to Pople’s STO-3G, the total energies appear to be lower by about 21 eV,
However, these absolute values are much less interesting than the changes due to
Madelung corrections, which as before are introduced step by step, i.e. the original
potential curve (row 2) is first, then only energy-corrected (row 3) and then also Fock-
matrix-corrected (row 4). We recognize (row 3 versus row 2) that the external Madelung
energy again is negative, but somewhat larger than in the 5T0-3G case (—0.30 against
-0.16 eV at2.51 A). This is because Clementi’s basis predicts more ionic species already
without Madelung corrections—in turn the latter become more important. Conse-
quently total energies (row 4 versus row 2) and charge distributions (row 6 versus row
5) change more dramatically than before.

Since the Madelung technigue improves total energies only by a small amount and
since any charge partitioning scheme is somewhat arbitrary, an unambiguous criterion
for the quality of the method is required. This criterion can be extracted from recalling
figure 1: if the Madelung radius |R,,| is extended to infinity, the ‘external’ Madelung
matrix elements will become so small that the difference between corrected and uncor-
rected Fock matrices must vanish. Thus, with respect to both total energies and net
charges, the same limiting values must result. Figures 4(a) and (b} give total energies
and boron net charges, respectively, for uncorrected and corrected calculations as a
function of the Madelung radius [Ry| (the lattice parameter is fixed at 2.51 A).
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Figure 4. (a) Dependence of total energies on [Ry| without {upper curve) and with {lower
curve) Madelung correction. (#) Dependence of boron net charges on 1Ry | without {lower
curve) and with (upper curve) Madelung correction,

We recognize that Madelung-uncorrected total energies and net charges significantly
decrease and increase, respectively, with increasing |Ry|. However, if Madelung poten-
tials are considered self-consistently, these quantities show only small variations if the
Madelung radius is enlarged. More importantly, the corrected curves appear to be close
to the exact, i.e. converged values from the beginning, even for smali |Ry|. Thus the
more ionic picture is the more realistic one. Since the computational effort closely
paraliels increasing |R)|, we conclude that more realistic band structures are obtained
with less computing time if our seH-consistent Madelung technique is adopted.
Moreover, since for instance the effective charges appear to be very sensitive to |[Ry|,
finite point-charge environments with fixed charges seem to be inadequate to describe
the real effects properly. Both the long-range behaviour of ionic forces (because of their
comparatively weak dependence on distances) and the self-consistent determination of
effective charges (because the potential is proportional to them) are of importance.

4.2, Cubic boron nitride (cBN)

For 3D solids the practical difficulties associated with large Madelung radii are more
serious than in 2D. On the other hand—at least for ionic and medium ionic crystals—
Madelung effects are more important. Thus it is to be expected that the power of a self-
consistent Madelung scheme will fuily develop.

Figure 5{(a) for CBN shows the same three potential curves as figure 3(q) did for
HBN. These curves again were computed using Pople’s $70.3G. Similar to HBN, the
experimental lattice parameter (3.62 A) is reproduced fairly well in all cases. More
important for our purposes, we note that the (external) Madelung energy (curve 2
versus curve 1) is negative, but twice as large as for HBN (~0.29 and —0.16 eV at the
experimental lattice parameters of 3.62 and 2.51 A, respectively). Thus Madelung
corrections are more important to 3D than to 2D systems, If one takes the Madelung
potentials self-consistently into account (curve 3), this further lowers the total energy—
as in 2D. But now compared to HBN an additional ‘energy gain’ larger by a factor of 6
(0.17 versus 0.03 eV at 3.62 and 2.51 A, respectively) is found with Pople’s s70-3G, This
is simply because Madelung corrections enter in the form of a threefold sum in 30, while
in 2p only a twofold sum contributes (see equation (6)).
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Fignre 5. As figure 3, but for ¢BN,

m
=

Table 2. External Madelung energies (meV) for different coverages of CO layers of hex-
agonal symmetry. Row 2: Madelung-corrected case; row 3: Madelung-uncorrected case.

8 1/3 7/12 1/1
EM (corr.) 18.2 373 54.9
EM¥ (uncorr.} 19.0 41.4 66.7

The wavefunctions ‘measured’ via effective charges change even more dramatically
owing to the self-consistent Madelung potentials. While for CBN the net charge on B
increases from +0.22 to +0.51 (at 3.62 A), the corresponding values for HBN were +0.48
and +0.56, respectively (at2.51 A). Thus, the Madelung potential produces comparable
effective charges for 2D and 3D boron nitrides. This seems to be reasonable, since the
large 30 Madelung potential compensates for the fact that the equilibrium B—-N distance
is larger for BN than for HBN (1.56 versus 1.45 A).

4.3. Layers of carbon monoxide

Up to now we have considered systems that became more ionic due to a stabilizing
Madelung potential. Layers of parallel oriented carbon monoxide molecules are
examples where the Madelung potentials act in a destabilizing manner. Clearly those
layers are models of chemisorption and catalytic processes. To be specific, we consider
hexagonal arrangements of CO molecules. If molecule-molecule separations of 4.35,
3.29 and 2.51 A are chosen, this corresponds to the real situations of CO adsorbed on
Co(0001) for the three coverages 8, = 1/3, 8, = 7/12and 6, = 1/1, respectively. While
the first two coverages have been observed experimentally, the ‘dense phase’ @5 is
hypothetical [39). Theoretically all three coverages have been investigated [39, 40).
These investigations mainly focused on the interaction between metal surface and
adsorbate molecules. However, we are more interested in the interaction between
adsorbate molecules, especially via long-range Coulomb forces. Thus we omit the
surface and take only carbon monoxide molecules into account, the C-O distance being
fixed at 1.15 A,

Applying Clementi’s minimal basis (M8) (contraction scheme for both Cand O: (73)/
[21]), the external Madelung energies given in table 2 were computed (for the three
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Table 3. Effective charges on C (in units of [e]) for different coverages of CO layers of '
hexagonal symmetry. Q¥: Madelung-corrected case; Q%: Madelung-uncorrected case;
Qc(cluster): cluster calculation.

8 1/3 7/12 11

oy +0,329 +0.310 +0.251
Qe +0.338 +0.327 +0.217
Oddcluster) +0.367 +0.364 +0,355

0
1.15 ;@\0

. -

Figure §, Cluster model for adsorption of CO.

coverages the pumber of internal, i.e. HF, lattice vectors was constani: M =91 in
equations {4a} and (4b)). The values in the second row were obtained from equation
(14) with self-consistently corrected net charges, while the third row arises from effective
charges calculated without Madelung correction. We recognize that the Madelung
energies (i) are positive, (i) are larger for the unmodified Fock matrices and (iii) act in
a more destabilizing manner the smaller the CO-CO distances, i.e. the larger the
coverage. To understand this we refer to table 3, where effective charges on carbon are
listed. The second and third rows correspond to Madelung corrected and uncorrected
band-structure calculations, respectively. The fourth row results from a cluster model
for CO chemisorbed on Co(0001). This mode! consists of three parallel CO molecules,
arranged in an equilateral triangle (see figure 6) with edge lengths b of 4.35, 3.29 and
2.51 A to simulate 8,, 8; and 8,, respectively. We note that the system is most ionic in
the case of the cluster {Q), > +0.35 for all coverages). Taking into account more-
neighbour interactions via the usual HF LCAO cO calculation (row 3) significantly lowers
the charge separation between carbon and oxygen. If now, additionally, the external
Madelung potential is ‘switched on’ (row 2), the net charges are diminished further.
Thus, the destabilizing Madelung effects, in contrast to boron nitride, tend to lower
ionicity. These effects appear more clearly, the more neighbours are explicitly or
approximately taken into account or the smaller the lattice parameters. There is a very
simple physical interpretation for the behaviour sketched above: from figure 6 one
realizes that the intermolecular C—Cdistances are always smaller than the intermolecular
C-O distances. This is true for any molecule-molecule separation. Thus, net charges of
the same sign destabilize more strongly than net charges of opposite sign stabilize—
the overall Coulomb interaction is positive, and the more positive the smaller the
intermolecular separations. To lower the total energy, higher coverages will produce
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less ionic species. If Madelung potentials are considered properly, i.e. if long-range
Coulomb forces are allowed to act more effectively, the charge separation in CO layers
is small for any 0.

5. Conclusion and future aspects

In conclusion, we have shown thai the Ewald method in connection with an appropriate
density-matrix-dependent population analysis (here Mulliken’s technique) provides a
promising way of treating long-range Coulomb interactions in ionic or partially ionic
crystals within the usual HF LCAO CO scheme. Apart from the external pair potential
factors with respect to ordinary calculations no new quantities have to be computed.
Thus our scheme treats important effects in a computationally simple and economic
way, especially in the case of 3D solids.

For the species we treated in this work (2D and 3p, intermediate ionicity) it turned
out that mainly the wavefunctions are influenced by the Madelung potentials, while
energy-related quantities are less affected. These systems become more and less ionic,
respectively, in the cases of stabilizing and destabilizing potentials. For 3D species or if
better basis sets were used, these effects were even more distinct.

It should be noted that the above scheme bears potentially interesting extensions
and applications. So it seems possible to use self-consistent Madelung potentials instead
of hundreds and thousands of fixed point charges to perform calculations on clusters
modelling ionic solids. Secondly, surface Madelung potentials should be easily obtained
by first halving the bulk pair potential factors and then adding half of the 2D pair potential
factors. Thus—neglecting relaxation and charge-transfer effects—slab calculations
might be replaced by ‘single layer plus Madelung potential’ contputations in the case of
ionic species, such as for instance metal oxides. Caution should be exercised if long-
range dipole effects are of importance—they are not accounted for correctly by this
crude approximation. Moreover, since pair potential factors are purely geometry-depen-
dent, i.e. lattice-dependent, quantities, by defining average effective charges it is
possible to include doping effects approximately. These average charges are simply
determined by the respective doping value(s) and give rise to modified Madelung
potentials. Last but not least it makes sense to treat only a subunit of a crystal explicitly,
while the rest is considered via an appropriate Madelung potential.

These fines of research are in progress in our laboratory. As an example, the band
structure of a single CuQ, plane, modelling the 3p high-T, superconductor
La,_,Sr,CuQ,, has been determined at different doping values x, taking charge-transfer
effects and a (fixed) 30 Madelung potential into account [41].
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Figure 7. Cluster mode! used for numerical justification of equations (11a) and (114).
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Appendix

Here we examine the quality of the approximation of Madelung matrix elements by
products of site and intersite potentials (equations (11a} and (116)). We use simple
clusters plus point charges as models, since the Madelung technique as a whole is based
on the point-charge approach.

A.l. Numerical results

Let us consider the arrangement given in figure 7, consisting of two atoms 4 and B at
positions R, and R, respectively, and a single point charge C (at R¢) carrying one
positive elementary charge (Qc = + |e|). The distance between A and Cis [R4 — R,
while C is away from the midpoint between A and Bby |(R4 + Rp)/2 — Re|.

According to equation (114) the approximated ‘diagonal Madelung matrix element’
(the ‘Madelung’ potential is caused by the single point charge in our example) is

V;.h;{» = VM(RA)S;W == (QC/'RA _RCI)S.!«W (Al)
with &, » € A, while the exact matrix element is

Q¢
lr— Rl

Vi = (et = Ra) 10 = Ra)). (A2)

Both the exact (column 2) and approximated (column 3) matrix elements are listed in
table 4 for different distances |R 4, — R| (column 1) for the special case of A = hydrogen
and u = » = 1s (Clementi’s MB used).
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Table 4. Exact (Vm, column 2) and approximated (¥1%, column 3) ‘diagonal Madelung
matrix elements’ for ¢ = » = H 1s and different |R, — R.| (energies in eV). Column 4 gives

the error.

Ry = Re| (A) Vi 14 A

0.65 -17.89647 -22.29130 4,30483
1,12 ~12.26888 -12.84119 0.57231
1.63 —-8.75966 —8.83275 0.07309
2,15 -6.69295 —6.70068 0.00773
2.67 —5.38886 —5,38943 0.00057
4,25 —3.38830 ~3.38830 <10-%
5.30 —2.71436 ~2.71436 <107*

Table 5. Same as table 4, but for off-diagonal element u = H 1s, » = Li2s and different
(R4 + Rg)/2 = Rel.

[(Ra + R5)/2 = R (A) v 144 A
1.06 —5.07804 -5.21512 0,13708
2.12 —-2.59140 —2.60756 0.01616
4,23 -1.30173 -1.30377 0.00204
7.94 —0.69503 —(.69535 0.00033

13.23 -0.41713 —0.41721 0.00008

We recognize that the error (column 4) drops below 107 eV for distances |[R,, — R¢]
larger than 4 A. Using a double-zeta basis did not lead to a different conclusion. The
‘off-diagonal’ matrix elements in the approximation (11b) are

R, +R Oc
VM = M (—’*;—B-) =- )
o 2 )% T TR Ro)2 - Rl A3)
(u € A, v € B), while the exact elements are given by the following expression:
< -O¢
V3 = (e = Ra) | == 207 = Rs)). (%)
lr—Re|

We introduced some asymmetry by choosing A = hydrogen and B = lithium (Ryz =
0.77 A). The values for the exact (column 2) and approximated (column 2) matrix
elements between aH 1s and a Li 2s function (Clementi’s me used) are displayed in table
5 for different distances |(R4 + Rp)/2 — R¢|.

From there we see that the matrix elements are smaller with respect to the diagonal
ones, but non-negligible. Moreover, column 4 of table 5 shows us that the error decreases
more slowly than in the diagonal case, but becomes about 107 eV and smaller for
distances of 8 A and above. Besides the discussed matrix element others were
considered, other basis sets were used and more point charges were introduced. The
result was that approximation (A3) and hence (115} turned out to be stable against all
these variations. Especially, owing to symmetry, exact elements that are zero are also
zero in the aproximated case. Since in actual calculations we use Madelung radii |R | of
the order of magnitude of 10 A and more, from the above numerical investigations
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the conclusions may be drawn that (i) the Madelung (point-charge) approximation is
justified and (ii} the additional approximations (11a) and (115) are accurate within about
1073eV.

A.2. Analytical results

Numerically the validity of equations (11} has been justified. We now want to show
analytically why these equations work and how the approximation for the non-diagonal
elements can be further improved.

Since in our quantum-chemical treatment of molecules and solids Gaussian-type
expansions of Slater functions are used, let us restrict ourselves for simplicity to single,
unnormalized, s-type Gaussian basis functions:

Xulr —Ry) = exp(—alr — R4|?) (AS5)
Xy(r — Rp) = exp(~B|r — Rp|*). (A6)

Using (AS) and (A6) and standard mathematical tools [42], the general exact ‘Madelung’
matrix efement (Ad) becomes

Vi =~ Qe ragewn (- g Re ~ Kol Flla+ DR, -RP) (A7)
where
Rp = (aR 4 + BRy)/(a + B) (AB)
and
1 Vi )
Pl = - fo exp(—12) d1. (A9)

The integral F[u] converges rapidly for moderately large Vu, i.e. for moderately large
distances between point charge C and the midpoint of A and B, and approaches the
limiting value V/(sr/4u). Thus in this limiting case Vﬁ, may be approximated by

32 -
M o UM = _:r_) (_,“_‘B -R 2)_&_
Vi, =V (a+ﬁ exp @+h) R4 —Rp| Ry —Ro| (A10)
Recalling that overlap matrix elements between primitive Gaussians are’
n \¥? ( af 2)
S, = (cr " 3) exp| — @+ p) IR, — R;| (A11)

we finally have

_ Qc s
l(aR 4 + BRg)/(a+ B) —Rc| ™™

Let us distinguish between two cases:

VM = (A12)

(i) Rp =R 4. Thissituation fixes the diagonal matrix elements. From (A12) we obtain
Vie == (Qc/IRy ~Rc) Sy (A13)

which is identical to the expression (A1). Thus (A1) and hence (114) are exactly fulfilled
if |Ry — Rl is large.
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(ii) R # R 4. This non-identity corresponds to the off-diagonal matrix elements, for
which (A12) is the analytical limiting value. If, additionally, the two Gaussians have the
same exponents o = 3, then

_ Qc
IRy +Rp)/2 - Rl

which is identical to (A3). Thus (A3) and hence (11b) are exactly fulfilled for |(R, + Rp)/
2 — R| large and a = 8. If different Gaussians enter in (A12), then (A3) and hence
{11b) contain an additional approximation. This approximation may be removed by
evaluating the Madelung potentials at the centres of products of Gaussians (Rp) rather
than at midpoints between atoms. However, since the error is small and the correction
had to be performed on the level of primitive Gaussians, i.e. at the price of considerable
additional computational effort, we decided to use approximation (11b) instead of a
‘weighted’ variant.

VM = Sy (Al4)
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